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ABSTRACT

Using complex variable techniques, the inverse Bessel trans-
formation is performed to obtain the actual Green's Function expression
characterizing a semi-infinite liquid overlying a viscoelastic halfspace.
The two media are assumed to be homogeneous and the discontinuity between
them is considered to be plane. The integral representing the inverse
transform is evaluated for normal incidence, where excitation is provided
by a simple harmonic point source in the liquid. The resulting response
is the sum of a direct wave, i.e., a wave passing directly from the source
to the receiver; and a reflected wave term, The actual Green's Function
is then separated into real and imaginary compenents, so that the effect
of introducing viscoelasticity into the model may subsequently be analyzed
by computer methods. Damping in the viscoelastic layer is assumed to be

small for our frequence range.

viii



CHAPTER 1
INTRODUCTION

The necessity to develop economically feasible means to classify
and extract subbottom sediments has increased steadily in recent vears.
Coupled with mineral, sand, and gravel extraction is the desire to
determine the engineering propertles of the sediments for offshore con-
struction purposes. Some data on the elastic properties of ocean sed!-
ments has recently been ohtained by Hamllton [4]). The sediments analvzed
were from North Pacific areas, hawever, the measured and comuted prener-
ties should be valid for similar sediments elsewhere., Table 1 indlcates
Hamiltont's results which are of interest in our theoretical formulation.

Using a simple harmonic point source for excitation, we will develon
an acoustlc response system for a semi-infinite liaquld overlving a visco-
elastic halfspace. The theoretical model emnloved in this thesis is
governed closelv by the experimental vievmoint. Surface reflections occur
well after first returns for near bottom sensing, thus enabling us to con-
slder the hydrodynamic ficld as being infinlte in depth. To account for
attenuation phenomena, 1t 1s desirable to consider Volgt darring in the
viscoelastic fleld. This is introduced by taking the Lame narameters o
be of the form A = A’ + A" %;», or =i + lwA" 1n the frenuencv domalin.

Theoretical develomment bepins by commutine the nrorer Tourier-
Bessel transformed Green's Punction for one viscoclastic layer and Infinite
Hquid depth from the peneral expression obtained by Marnuson and Stewart [87,

Subsequently, the proper contour 1s chosen and the inverse transform is

performed, Higher order branch line contributions are exnressed as a serles
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of Gamma Functlons, and perturbation theory is used to compute the un-
damped Stoneley wave veloclty.
Previous Investigations of thls type have been undertaken by

Pekeris [10], who investipated the response due to a voint source in a
Hquid overlying ancther Mauid. Similarly Press and Ewing (2] investi-
gated the model dlscussed in this thesls, but neplected branch line con-
tributions, The branch line integrals were later evalusated by Fonda anc
Nakamura [5]. Most recently, Mapnuson and Stewart [8] have developed a

general multllayer recurrence relation sultable for comnuter analysis.



CHAPTER II
THEORETICAL DEVELOPMENT

1. Green's Function "ormalism

We will determine the actual Green's Function for a semi-infinite
liquid overlying a viscoelastic halfsvace for the speclal case of normal
Incidence. The general Fourler-Bessel transformed Oreen's Funetion as

taken from equation (18) of Magnuson and Stewart [8] reads as follcws:

2
Klaocosh[aoz<]-K2p0m sinh[aoz<]

G(5,2,,2 ,0) = EF%‘ sinhla _(h ~z )]{ }o(1.1)
0

. 2
Klaocosh[aoho]-thom sinh[aoho]
where for one viscoelastic layer

2
L= 09ealP D) < haan’]  (L.1-)

-
1

and K

2 —aLK% ) (l. l_b)'

The functlons a, .o are glven by the following exnressions:
=D

a, = "cz—}(g (1.1-c)
ar = 'CEHKE {1.1-4d)
8y = 'cz—Kg (1.1-e) .,

For the case of an unbounded fluld, hg is taken to Infinity and esuation
(1.1) (upon expansion of sinh and cosh terms) reduces to:

1 -2 (zs-z¢) —ag(z,+z ) Klao+K?now2
g(cgz>,2<,w) = W[e o < to QY>> < (-};——-—-—-—-—}-{_—-—2—)] (1'2)
° 185"l



The first term in equation (1.2) represents the wave travelling
directly from the source to the recelver, while the second term represents
the contribution due to the vilscoelastic halfspace, Substituting eaqua-
tions (l.1-a) and (1.1-b) into equation (1.1) and noting from Fipure 1

that Z, = By © h and Ze® Z%n = 2 > the Green's Munction becores:

6(5,z,h,w) = %;[e"a";:_m + e_aZZMZ) I;E‘;z;] (1.3)
where

N2 = agnl(2c?-Kk2) b ayc?] - oK (1.3-a)
and D(z?) = aom[(zcz—-l(.%)z—ﬂaLaTz;zj + aLK;I‘ (1.3-b).

Performing the inverse transform on the primarv stimulation or direct wave

term in equation (1.3) will yield accordine to Sommerfeld [111]:

-]

-a_(h-2z) -1k (h-2)
[ m—% e © I (erigdg = 'llG(h-z) e ° (1.4)
0

The maln objective of this investigation 1s to determine the inverse
transform for the second term in equation (1.3). Noting this residual

term as g' we may wrilte:
G'(r,z,h,u) = fﬁ'(c,z,h,m) T, (zrizds (1.5)
0

For the case of normal incidence (r=o) , .To(cr) + 1 , and equation (1.5)
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simplifies to:

G = fg' rdz (1.6)
0

2. Application of Contour Integration

We choose to integrate the interral (1.6) in the complex

{g=g+1n) plane. Ve write a contour integral from equation (1.6) as

follews:
7 -aolhtz) o
1 =¢}e . N(E2) far (2.1)
b o  D(£7)
Branch point sinpularities of the integrand occur at ¢ = tKO Lo The
: LU, T

poles of equation (2.1) are gliven by

D) = 0 (2.2)

Strick and Ginsbarg, [12] nurmerically ohtained one real root, revresentirc
a Stoneley wave contribution, for equation (2.2). The effect of the Volct
type da.olig employed in thils treatment is that the ncle and KL,T were
pulled slipghtly off the real axls into the fourth cuadrant.

Having, determined the singularities in eaquation (2.1), ve must now
select an appropriate contour. Careful examination of the exconential term
in equation (2.1) shows that we nmust keep Re{ao} > 0 fer converpence,
Sommerfeld's [11] radiation condition 1is satisfied by keenins Talagh > 7.

We draw the contour as shown in Fieure 2. Arplvine Cauchv's theorem to

equation (2,1) for the path showm in Fpure 2 and notine that the contrlrut!sn
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along the quadrant vanishes (see Aprendix A) we obtain as follows:

» o 0
-a.(z+h) 2 -a,(z+h) 2 -ag(z+h} | 2
qge az N(Ez) cat = r e az :\1(;2) e + [ e N[(-in}z] Indin +
0 (o] D(E ) O O D(C ) _1m o] D{(“jﬂ) ]
I. +I +1I = -2r1 x Residue (2.3)
Ll L2 L3

Solving for the real axis contribution, which represents the Green's Tunc-

tion, will yield

[ e ~8o(z+h) N(z2) ¢~ %(2+h) N[(—in)2]
0

%o D[ (~1n)

gdg = = f indin - I -1 -1 2711 R

% p(cd) A,

3. Evaluation of Residue Contribution

The residue term in equation (2.4) 1s pglven by the formula:

——~§; £] (3.1)

where Eo 1s the value at which D(52) + 0 ., It should be clear that the
residue in its present form is indeterminate. Aprlving L'Hosnital's Rule

we obtain:

(3.1-3)
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In general any point in the £ plane represents a wave nurber for
a certain mode of vibration; l.e., € = g—. At the pole, the phase
velocity represents the propagation speed of Stoneley waves at the inter-
face. To evaluate the residue contribution, we first determine the nhase

velocity of these surface waves. From equation (1.3-b) we write:

1/2 2 1/2 1/2
D(s%) = 0 = m(ae—Ki) [(252—1&%) -—452(52-@ (52—-!@) 1+

1/2
Kp(£2-K2) (3.2)

Recalling the expressions for the wave numbers:

K, = -‘é’; (3.3-a)
K = %z_, (3.3-b)
Kp = %T— (3.3-¢) .

Using equations (3.3a-c), equation (3.2) simplifies to read

1/2 2 1/2 1/2
0= m(1-(59%) " [(2~(29%) - 81592 (1=(E92) T 4
" % Cp ‘L Cp
4 2 1/2
() (-9 (2.4)
Cp °L

Equation (3.4) represents the frequency Independent modal enuation
at the pole. The undamped phase velocity is determined by uping perturha-
tion techniques (see Arpendix B). The result is that the rhase veloclty

equals the transverse wave velocity to first order In e . The faet that
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c = qr enables us to conclude that:

V2 o, L1

) =(5-%) =0 (3.5)
@ o

N

2 W
ap = (€7 - =
“

The residue is evaluated by first computing %E D(Ez) . Using the chain

rule we may write

4 2y = Q0 éDly) .
where
b= (3.6-2)
and

2 /2

1/2 1/2 V2 1
D3 = (K ml(2p-K) = b(p-kD) (KD T+ KK (3.6b)

Using equations (3.6-a) and (3.6~b) we may expand eouation (3.6) as follows:

. 2 172 1/2
& D(e%) = 26052 (24-KS) - Uy(u-K°) (k) T+
’ 0
M
2 A AT
mao[u(2¢~KT) - u(aLaT + 55; + éEEJ] + ggg} (3.7)

Applying the result in equation (3.5) to equation (3.7} we note that the
¥

term ;%;-+ w , It follows from equatlon (3,1-a) that the residue con-

tribution vanishes, Computing the exact value of the vhase velocitv from

equation (3.4) would yleld a small residue contribution.

4, PBranch Line Interrations

We wish to evaluate the line integrals Ll’ LE’ and L3 in

equation (2.4} on the naths shown in Pieure 2. We bheein by
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discussing the intepral for the branch point at £ = KO .

1) Line Integral for Path L,: From equation (2.4) we may write

the Integral as

e—ao(z+h) N(Eg)

= gdE
L, f 8  p(£d)
Ly

I

(4.1}

The path of integration for equation (4.1) is Indicated below.

D A

We recall that a, and £ are related as follows:

a- =t -K 4,23
It follews that

aodao = tdg (4.3)

Applying equations (4.2) and (4.3) to the inteoral (4.1) we mav chance

variables of integration so that the integral reads

2
N{a“}
—92_  aa (L, )

I = f o—a0(z+h) ]

2oy D(a)
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Along the path AB we write

ao = —ino

where . i1s the distance from the branch noint. The arrument of ao
Inereases bv 2n when passing from AB to CD . Hence, we may sav that

along CD

- 12n
aO = —inoa

It should be clear that ai = -ng on both sides of the branch cut. In-

tegrating along e gives us symbolically

0 -
= = = 5
=] Ot [ Oang= [ Qg+ [ Oang =0 s
AB CD ® 0
Contributlions on the two sides of the cut cancel, resulting in IL =N,
e

2) line Intepral for Path Il: The nath of Intepration Ll for

the branch peint £ = K, 1is indicated below.

L
'y

Apain we choose to inteprate with respect to the variable a, Prom
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equations (2.4) and (4.3), the integral reads

2
N(a%) _
I = [ e~30(2th) -——{%— da, (4.6)
12 D(ao)

2
The value of the Interration variable a, at the branch point 1s siven by

o = (£KD) T = (K-KD) (4.7
Using equation (4.7), on the portion AB we write

a, = o - 1nL (h.8)

and on €D

12n
a, = a; - inye (4.9)

5 o 1/2

Applying the change in variables for the auantity (¢ -KL) will vield

the following on AB:
2 2,12 2,172

(°-K[) = (-2nar-ny) = a (4.10)

and on CD:
1/2 1/2 .
2 .2 I 2 -
(£ _KL) = e (—2iﬂLGL—nL) = _aL (u.ll)

Since the gquantity ar chanres sipn from one side of the cut to the
other, there 1s a discontinuity in the Integrand. Using equations (4.10)

and (4.11) one writes the integral (4.6) as follows:

°L 2
T = f ceotz)ot)

2
alrim D(ao’aL)

a,=1=

P
N(a_,-a, )
da, + [ e_ao(z+h)—-—51*jﬁi- d
]

] G T
D(ay,-ar)

o]
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op-1= o
f -ao(z+h)[N(ao’ aL) n(ag ’aL) J o—8,(z+h)

D(a "aL D(a saL)

aLF'(ag)daO (4.12)

GL GL

We now exnand

F(a ) = F((a —inL) ) A+ EnL + Cni 4 v (4.13-a)

and
L1232 12 12 in
ap = (—2inLaL-nL) =1 (QuL) (nL) (1 - —;;) =

3/2 1/2 1/2 ing
£ o) () Do (.13-¢)

Recalling that dag = --idnL , we Integrate equation {4.12) along ny, end
obtain
T —(o-ing)(z#h) 32 12 e inp
IL2 = =1 f e (i (20L) (nL) (1 - HE£-+ ')(A+BHL SRR
0
1/2 1/2 T 1/2
- -ay,(z+h) inL(zHl) 2 ..
i (EGL} e [A +A 3 ](nL) dng
0
@ 2n-1
1/2 1/2 =
=1 (2qp) e~oL(Z+h) f ei‘”L(z*h)A]'an ° ang (4.14)
0

To obtain the expression for the Intepgrals in enuation (4.14), we choose

to Integrate in the comnlex (o = ng, + 1p) vlane on the contowr shown

in Figure 3. Arplylng Cauchy's Theorem around the nath, and notine that



o B
o =Ny
o= Reie
o = P._ej'ﬂ/2
—>

Contour of Integraticn for Thuvation (4.14)

FIGURE 3

16
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the contribution along the quadrant again vanishes, we obtaln the

4
e

following:
1g{z+h) 2n51 —np (z+h) .:—z_ y me”/g(zm) 1“/.2)211“1
[ et do = f e g dnL + [ g’ {Re
0 @

Solving for the real axis contribution in equation (4.15) will yileld

® on-1 o 2n-1
f AN, 2 oy f n/H(2n-1) -Rz#h)p 2 4 (4.16)
0

L L
0

Recalling the expression for the Garma Function

r(z) = J e"uuz—ldu (4,17
0

Applying enuation (4.17) to equation (#.,16) will yield

2n-1 . ip(en-1)

inr(z+h) 2 . le 1 )
e L nL ClnL = ngl“‘—z——"_{_-h—-——' I'(I'H'“E‘) (4,18}

Q== B

The constants A in equation (4.14) must be determined to comlete
the solution of the branch line intepral L2 . It should be clear that
the lowest order constant Ai mav be obtalned by evaluating equatlon

(4.13-a) at the branch point (nL=O) . The result (see Anpendix C) 1is

glven by

(4.19)
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Using the results of equations (4.18) and (4.19) the branch line inteprral

in lowest order form will read as follows:

32 12 -a(zn) Mg A/ 172
I, =1 (200) e ] (n) {4.20}
12 L Mot (2K%f 2) z+ h
1, Ky
3) Line Intesral for Path L3: The path of intepration L3 for
the branch pvoint £ = KT is Indicated below.
' A
®
C B
*i
D A
The interral upon changing varlables will read
Vil
-ao(z+h) N(ao)
I, = e Ada ' (4.21)
L 2 0
31 D(a_)
3
The value of the varlable 3 at the branch point is given by
172
ap = (G-K0) (4.22)
Using equation (4.22), on the nortion AB we rav wrlte
ao = Gy - inT (4,23

and on CD

i2
a, = aT—inTe T (b, o)
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> 1/2
Apnlying the change in variables for the auantity (g —K,%) will yield
the following on AB:

1/2 1/2
(£2-K$) = (—21nTuT~n§) = &m (4.25)

and on CD:

1/2
(EZ—Kg) = ei“(~ZianT—n$) = -ap (4,26)

Applying these results to the Integral exactly as done in the preceding

section will yleld

/2 1/2 —oy(z+) "f Ing(zth) | 2L
e

IL3 = 1 (EGT) e Bnnr dnT (1.27)
0 .

It should be clear that the integral terms are exactly of the same form

t
as equation (4,18), The lowest order constant By 1s now determined

(see Appendix D), and the branch line intepral IL is written in lowest
3

order form as:

1/2
3/2 1/2 ~aT(z+h)[ l6aqnm% ein/u(ﬂ)

I, = -4 (QaT) e Kg(uqy&aL)gj = T (4,28)

L

5. Evaluation of the Intepral Aloneg the Iracinary Axis

From equatiaon (2.3), the interralalong the lmarinary axis in

Fleure 2 is glven by the following expressiocn:

0 —ao(z+h)
e N{-n

e o D("Tl

2)
S int{in) (5.1)
)
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If we Integrate along the variable n , equation {5.1) becomes

0
- e
=
n —cn

Since the Integrand in equation (5.2) is odd In n , the upper limit mav he

1/2 1/2
SO (zh) = 1) (z#h)
N(—n ) —ndn = = N("’ﬂ ) dn  (5.2)

D(-n°) ) e D(-n?)

172

2,2 2,..2
1(n +KO) 0 1(n +KO)

changed from - « + + » without any loss of generalitv. Fauation (5.2)

now reads
1/2
w —i(n2+K§) (z+n) 2
I, =168 Men ) (5.2-a)
1 72 5

nooq i(n2+K§)

where from equations (1.3-a) and (1.3-b}

1/2 2 1/2 1/2 1/2
N(=n®) = 100740 m((2n8) ~In?(nP+) T (nHE) ) ) T (5.3-a)
and

1/2 2 172 1/2 1/2
D(-n") = 10(n*+K3) m((2n%+63) Mn°(n*HD) T (nPHE) | MKa(nTHE) ] (5.3-0)

b
Since the interrand of eguation (5.2-a) is of the form I eixh(njﬁ(n)dn ,
a

where x  1Is Jarge, 1t is desirable to Inteprate by the method of staticn-
ary phase. The major contributlion to the Intepral results from the noint

of stationarity, i.e., hi{n) = 0 . From ecquation (5.2-a) ve write

1/2 _ 4 1/2
h(n) = (nS4K2) " = K (14n%K7) (5.8-2)
It follows that
h'(ﬂ) = h 1/2 (S.M—b)
2,~2
Ko(l+n KO )
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and

o 5732 o 12
h'(n) = Ty (14 K T 4 E1nPP) (5. l-c)
K 0

0O

From equation (5.4-b) we note that the point of statlionaritv 1s given by

Ny = 0 . Expanding equation (5.4-a) about this noint will vield

h"(n,) 2
h{n) = h(ﬂo) + 5 (ﬂ'ﬁo) + ' = XO + '2"'K-+ v (5.5)

From equation (5.2-a), the functlon gf{n) 1is given by

2
N{~-n") 1
g(n) = (5.6)
D("nz) (n2+K§)1/2

Expanding equation (5.6) about the noint of stationarity will vield

d 2
gln,) = e(0) + aqf!(n R (5.7)
where from equation (5.8)
1 N _ 1 ,21% %%
z(0) = #— = et — 2] (5.8)
K, DUO) ~ K “piepo c,

Substituting the expanded functions in equations {5.5) and (5.7) into

equation (5.2-a) will yield

: { _1K0(2+h) 7 -i/2K n2(2+h) 0.,C.=p_C
I ="e 0 L, O
i K € 0. C.Hp C
n o) 0 1L "070

Indn (5.9)

The integrand of eauation (5.9) is of the “orm e’du . Annlying this result,
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the Integral 1s evaluated as follows:

i PR R )
I =€ °1 L™ e Ko cAnlzth) o
In z2+h ol 1.¥9:% K

O

l_.l
O

~4(z+h) 2 |7
"1K0(2+h)o -, T2k "
e l L ]e o] =

Z+h chL+O c

- +
. 1KO(Z h) 01 1o C
Z+h plL+pC

=y (5.12)

6. The Comlete Green's Function

Substituting the results of eauations (4.20), (4.28), and (5.10)
into equation (2.4) enables us to exvress the residual Green's Punction
term by the following relation:

) 3/2 1/2 —aL( z+h) NKT iw/ll 1/2
g (r,z,h,u) = =1 (2uL) e +

m“L(EKi K%) z +h "

3/2 1/2 - (z+h) 16 a iﬂ/ﬂ 172 __-1Kqg (z+H) nyCr=n C
i (20'1‘) e aT l%( GTW L ] - +1Th (Z+h) T O O} (6.1)
aTm+

p lCL+O ¢

The first term of equation (6.1) correspoinding to the branch cut for
the sinpularity at ¢ = KL In Figure 2 warrants further investipation.

We recall the expressions for the branch point singularities in terms of
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[o]
1/2
a, = (%K) =0 (6.2-2)
> 1/2
o = { —-Ko) {6.2-b)
1/2
o = (x.%-xi) (6.2-¢)

The sinpularities of equation (6.2) are mapned into the a, plane as

ghown In the following diapram.

Coordinates in the 3, rlane have special simificance in the contour

Integral of equation (2.4)., The condition Re{ao} > 0 accounts for wave

attenuation. Since the branch point KL appears on the imaglnarv axis

in the a, plane, we are comrelled to define this branch roint as an
Improper sinpularitv., Aoplving this result, eauation (£.1) becomes

1/2 1/2

13/Eeivr/ue~urf(h+‘z) (2%) 16mn GTaTQ

G'(r,z,h,w) = 5 5
(h+z)KT(aTm+aL}

-1K _{(htz)
e ©° rpchm”oCo]
L
(ht+z) 0 1CL+OOCO

(6.3)
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The complete Green's Function, obtalned by adding Sommerfeld’'s result

for the direct wave contribution {glven in eocuation (1.4)) reads as

follows:
—a,(htz) 172 3/2
. ~1K (h-z) e—iKo(h-z) 1Loc e"T 16/5m - af
6(r,z,h,u) = ,ﬁ{e oy et e ] - - ! )
_ l Lt (h+z)KT(uTm+aL)
(6.4)

Fquation (6.4) represents the lowest order form of the fireen's Function.

In order to determine elastic versus viscoelastic effects in subsenuent
computer analvses, equation (£.4) must be separated into real and iracinarv
components {see Arpendix E). The result for the elastic contribution is
glven by

—iKo(h-z) -1K (h+z) ( 2

(n c )
l ,e e 0 Lo
G. = 31 - [ 7 -
E I (h-z) {n-2z) ( by + nocoKLo)e
_ 1/2 ., 3/2
. aplhtz) ¢ 5 32 S8, KT (B, +8,,)
{KTo(mel+52) ]
and for the viscoelastic
. e—iKo(h+z) 2 0104 K&
Gy = o7 " z) L‘”l‘*’*-"o"o“m)e
-QT(h+Z) 1/2 ' 3/2 3 '
. 16v2mm B LKy (mpy+85) (28, B 585K, Ko
(h2) (K (ma +6,) )
—qT(h+z) 1/2 3/2

32/§mn By sg KT(ms +32)+¥ (8 +r~11f Km}]
(h+z)[KI.0(m81+62)]3
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CHAPTER IIT

RESULTS AND DISCUSSION

The expression for the actual Green's ﬁunction characterlizine a
seml-infinite 1inuild overlying a visceoelastlc halfsnace (for the snecial
case of normal incidence) has been determined. The resultant Fourier
Interral is expressed as the sum of a direct wave contribution, a branch
line interration, and an Imaplnary axds Inteeral, The branch line inte-
gral was evaluated and the result 1s exnressed as a serles of Gamma
Functions (equation 4.18). Results for the branch line intesration concur
with those of Honda and Makamura [5], except that In our ecase there *s rno
radial dependence and the wave numbers of the viscoelastic fleld azre com-
plex. The intepral alonm the imacinary axis was showm to be nrorortional
°1°L 0%y

e, 4+ C
P1%1. 6%

of the Stonelev waves at the interface was determined usin~ nerturhaticon

to the plane wave reflectlon coefficlent [ The nhase velocity
techniques. The result was that the Stonelev waves rnronapated at 2 sreed
equal to that of the transverse shear waves. The analvtic determination
of the Stoneley waves may surrest 2 basls for comuter 2nalvsis of the
Stoneley wave equatlon,

The Green's Tunctlion obtailned in this thesis clearlv indicates
the feasibllity of classi?vinv.subbottom sediments in terrs of thelr
physical parameters. WWe have determined the properiies of thoe system and
must now analyze the varicus outnuts, The theoretiral model emmloved “n
this thesls has been closely povermed bv the experirental viewroint, s'nee
normal incidence testing may be accomnlished from s moving research vessel,

Recent commuter analyses at the Universitv of New PFarmshire indieate that
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the normal incidence case may be valld for incidence anerles as larre as
18°,

Subsequent analvses should account for a corrurated interface and
inhomogeneitics 1n the viscoelastic medium, These peneralizations mayv
be Introduced using statistical metheds and rerturbatien theorv. Using
computer analysis and the work of Marnmuson and Stewart [8], the model should

be modified to account for the effects of an unlimited numrer of lavers,
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11,

12.
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APPENDIY A

VANISHTNG INTEGRAMD ALONG THE OQUADRANT

Along the auadrant in Figure 2 the exronential of the iInterrand in

equation (2.3) of the text 1s simmlified as follows:

—ao(z+h) —-£(z+h) ~Rcosa+ising) {(z+h) ~Reosa(z+h) -1Psing(z+h)
e = e =g = e e (A-1)

-1Rsine(z+h)
As R 1is taken to infinitv, e would revresent o rartdley

osclllating function with self-cancelling contributions. Sirmltanecusly,
-Reoso{z+h)
the e term converges to zero., Thus we mav conclude there 13

no contrilbution to the interral along the ouwadrant.
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APPENDIX B

ANALYTICAL DETEPMINATION OF STONELEY “WAVE VELNCITY USTHG
PERTURBATION TECHMINUES

We note that for our varticular case of interest, as seen from

the values in Table 1, the following inequalitles hold:
¢ > €, > Cp (B-1a)

<< ) (B-1b)

Y1
1
Recalling the exrresslons for the propapation velocities
A
2 _ "o
Co = D_— (B‘-‘Ba)
o
Ay + 2u
ot = A1 (B-3n)
1
2 H
cp = = (B-3¢)
1

The ratlc of the snuares of the nronasation velocitles in the viscoelastlc

medium may be approximated as follows:

c'% N T
c_ié"' N Fouy ) e €1 (B-4)
or
og = £y0f (B-lin)
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Using the results of Ham!lton [4] in Tahrle 1 the corvressional wave
velocities In the two medla may be related b7 a second nerturbation

parameter as follows:

2

of = c§(1+52) (B-5)

Table 2 contains exrliclt values of the nmerturbatlon parameters e, and
Eq for the sediments considered in Table 1. Alsc Included are the
corresoonding Stonelev wave velocitles as obtalned from the experimenta’
data of Strick and Ginsbhare [12]. Ue recall that the modal enuation at
the pole is =lven by
1/2 2 1/2 1/2 i 2 1/?
2 2 2 2 , ,

0 = m(1-(3)7)  [(2-(C)7) -4 () BED) Q-5

o T L O P I,
Ve may formallv aoply perturbation theory to the nroblem by arrroximatine

the sauare of the phase veloclty as folleows:

2 2
e = ' + elc" (B-7)

Prom equation (B-4a) we note that the zeroth order phase velcocity is

o
obtained from ecuation (B-6) by settine e = 0 . The modal enuation

II‘I
reduces .o
' 2 /2 r 2 1/2
m1-(z)) + (-(39)) =0 (B~fa)
o L
or 2 1/2
-(1-(Z-) )
= L a
m = R (P-En)
(1—(5*) )
o]

Recalling that Cp > Gy » Ve consider the variocus rossible values for
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TABLE 2, Perturbation Parameters and Stonelev Wave Veloelties for
North Pacific Sediments

(From Hamllton [4] and Strick and rfinshare [127.)

Sediment Tyoe €1 €2 COTOMELEY (m/s2c )
Sand:

Coarse .0184 5100 22U

Fine 0485 . 3560 341

Very Fine L0865 L2880 s
Silty Sand 0750 L2450 ing
Sandy S1lt . 0505 .0755 330
Sand-Si1t-Clay L0640 . 1100 355
Clavey Silt .NU30 .0489 3k

S1ltv Clay ,0358 L0267 248
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1
e as follows:

(A) It ¢ > ¢ the rirht-hand side of enuation (B-8b) is neeative.

L >
(B If o' < ¢, » the right-hand side of eauation (3-Pb) is neeative,

(€) If ¢, < ¢' <c, , the rlght-hand side of enuation (B-8b) is imarinarv.

L 3
Since m 1s a density ratlo, each of these rossibillitles renresents a
physically imossible situation., We conclude that the zeroth order rhase

velocity does not exist and eauation (B-7) reduces to

2 C”2 (n:—"})

Substitutinge equatlons (B-Ma), (B-5), and (B-2) into the mxial enmuation

(B-6) will vield:

RIS 212 m2
0 = m(ley (e) (G [ ~HGey (7 -7 )

C" 1] n 2 1/2
+ (E‘*) (l-—e 20
L ‘L

Aoplying the binomlaltheorem to this result we obtain

€ +e £ " wao1/2
0 = m(1- X2 (-2 )i - &)
1, T L

n b €y n
(~—) (1- -—(—-) ) (B-1N)

.J

Equating each order in eauation (B-10) to zero will eive the followine results:

"o 1/2 L

mt(zﬂc-—> e ) 1= (P-11a)
°r, L

" 2 A 1/2 C” o "o ]/2 1 C“ 6
eq[- —(CL) [(2- (-——) ) =H(1~ (-—;) ) ]+2m(-c-I— (1- (—E) ) - 5(5}_) =0 P-119)



33

Combining equations (B-112) and (B-11b) we obtain

"

¢ =cp {(B-11c)

Applying this result, it follows from equations (F-8¢) and (B-4a) that

¢ = Cn to first order In e .
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APPFNDIX C

DETERMINATION OF THE IOWEST ORDER CONSTANT FPOR THE
DISCONTINUITY ACROSS ERANCH LIVE Ll

The discontinulty across the branch llne Ll is gtven hv the

followlng relation

2
2 N(a ,"‘3 ) J(a » )
F(a ) = 13‘((01 ~in ) ) = 1 = L 87

= A+ Bn +cn? ce(e-1)
A, D(a s al,) D(a aT

Tt should be clear that the lowest order constant A s determined hy

setting ", =0 . It followys that

M~ aT) N(aL) B N(—aL)D(aL) - N(aL)D(—aL)

2y _ w2y L
Flag) = Flap) = A = aL[D( ~ay) D(aL)] - EL—[ D(-a JD{a, ) 12
Recalling that £ = KL at the branch noint, we may write
‘ 2
N(ay) = aml (2K2-53) ~lay agkC] = Foay (7-32)
2 ,2° el 1
Day ) = opml{2K -K;) —ﬂaLaTFL] + Kpay (C-3n)
2
N(—aL) = arpi(EKE—Kg) +“aLaTKE] + K;aL (C-3c)
_ 2 2.2 A4
Di-a;) = epml (2 ~Kp) anaIF'TKLJ - Ay (0-2d)
It follows that
N(—aL)D(aL) = {(a m) [(?Y ) wlﬁqTaTV ]k“q may V (”V KT) +ﬁ“ ? {r-ha)
N{ap )D(-a; ) = ((am) II(2KT KT) -1 wfa,l, I] 2a rnaJﬂ.,?(?}’ }T) 5 St } (C-lp)

2.4 2 £
D(-a, )D(a) = {(a;m) [(2K K,T.) 162200k, 1Mo, mf K ¥ tal ) (reic)



Substituting equations (C-Ba-¢) Into enuation (r£-2) will vield:

A=

2
o (A )
2 b
(o L) -26a50y TSyt Kot

We note that at the branch point

1/2
. 2 _
gy = (-2In;a;-np) =0

fpplying this result, equation (C-5) reduces to

14}{;

Aep o=
L2 2.4
o (2R -K7,)

1
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(c-5)

(C-€)



APPENDIX D

DETERMINATION OF THE LOWEST ORDER CONSTAITT WOR THE

DISCONTINUITY ACROSS BRANICH LITME L3

36

The procedure used to determine the lowest order constant for

F(qg) 1s 1dentical to that used in Avpendix C, The discontinuity i3

glven by
N(-a,)D{ap) - N(a,)D(-ay)
Flag) = 2l i il
- ar D(-ap)D(a,)

Recalling that ¢ = KT at the branch rnolnt, we write
o = ot -
N(-ap) = “'I’”[Kg"“%%“%] - "'*.?'E‘L
Dlaq) = apnliq-la 23] + Kyoy

Dleag) = enlXittaran ] + Koy

It follows that

2 )
N(-ap)P(ag) = ((agm) (KE-16a202001 B gl 07
agDl-a) = (o f*ﬂflfaywirl*%%ﬁgr? i
D(-ag)D(ag) = ((agm) [}’\,:,‘—163113,1,1(,?]4,2 o, ronila?y

Substituting eguations (D-3a-c) Into enuation (D-1), and noting that =

at the branch polnt we obtaln

(-1

{D-ra)

(D-2c)

{D-2)

T

-1
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