SEA

GRANT PROGRAMS

bopr
UNH-RAYTHEON SEA GRANT PROJECT
technical report
The Normal Incidence Acoustic Response for a Liquid Overlying a Viscoelastic Halfspace

James Katsekas
Mechanics Research Laboratory

A Report of a
Cooperative University-Industry Research Project between

University of New Hamphire Durham, New Hampshire 03824

Raytheon Company Portsmouth, R. I. 02871

> UNIVERSITY of NEW HAMPSHIRE DURHAM, NEW HAMPSHIRE. O3824

Report No. UNH-SG-117
July 1973

A TECHNICAL REPORI TO

THE NATIONAL SEA GRANT PROCTAM

OF

THIE NAITONAL OCEANIC NND ATMOSPFIERIC ADMINISTPATION
U.S. DEPARTMFNT OF COTMERCP

This work is a result of research snonsored by MOAA Office of Sea Grant, Department of Commerce, under Grant No. NG 30-72. The U.S. Govfrmment is authorized to produce and distribute reprints for qovermmental murnoses notwithstanding any copyriqht notation that may appear hereon.

Approved:

Musa Yildiz - Technical Director
oocperating institutions

University of New Hampshire	Suhmarine Sinnal Division
Durham, New Hampshire 03824	Raytheon Commany
	Portsmouth, Phode Islanc $0287!$

ACKNOWLEDCFMENTS

The author wishes to express his anrreciation to Dr. Allen Macmuson frr his unselfish quidance and assistance in the nreparation of this renort. His physical insight into the problem nroved to be invaluable in this investigation.

Dr. V. D. Azzi and Dr. Adim Yildiz, whose traduate courses nrovider the necessary backaround for the prohlem, are also aratefully ackrowledart.

This report was supporter by the NOAA Office of Sea Grant under Grant No. NG 30-72.
Barbaros Celikkol - Project Manager
A.S. Westneat - Raytheon Project Manager
Musa Yildiz - Technical Director

TABLE OF CONTENTIS

LIST OF TABLES v
LIST OF ILLUSTRATIONS vi
NOMENCLATUPE vis
ABSTRACT V111
I. INTRODUCTIOH 1
II. THEORETICAL DEVELOPMENT. 4

1. Green's function Formalism 4
2. Anplication of Contour Intepration. 7
3. Evaluation of Residue Contribution. Q
4. Branch Iine Inteprations 11
5. Evaluation of the Interral Alone the Imactnary Axis. 10
6. The Complete Green's Punction 22
III. RESUITS AND DISCUSSION 25
BIBL IOCRADFY 27
APPENDICES
A. Vanishing Integrand Along the Quadrent 28
B. Analytical Determination of Stoneley lave velocity Using Perturbation Tectuniques. 20
C. Determination of the Lowest Order Constant for the Discontinuity Across Branch Iine L_{1} 34
D. Determination of the Lowest Order Constant for the Discontinuity Across Branch Iine I_{3}. 36
E. Separation of Creen's munction into Elastic and Viscoelastic Commonents 37
7. Average Measured and Computed Elastic Constants for North Pacific Sediments on the Continental Terrace 2
8. Perturbation Parameters and Stoneley Wave Velocities for North Pacific Sediments. 31

List of Illustrations

1. Geometry of Acoustic Response System: Semi-infinite Inuuld Over a Viscoelastic Halfspace. 5
2. Contour of Integration for Equation (2.1) 8
3. Contour of Inteqration for Equation (4.14) 16

Nomenclature

ABSTRACT

Abstract

Using complex variable techniques, the inverse Bessel transformation is performed to obtain the actual Green's Function expression characterizing a semi-infinite liquid overlying a viscoelastic halfspace. The two media are assumed to be homogeneous and the discontinuity between them is considered to be plane. The integral representing the inverse transform is evaluated for normal incidence, where excitation is provided by a simple harmonic point source in the liquid. The resulting response is the sum of a direct wave, i.e., a wave passing directly from the source to the receiver; and a reflected wave term. The actual Green's Function is then separated into real and imaginary components, so that the effect of introducing viscoelasticity into the model may subsequently be analyzed by computer methods. Damping in the viscoelastic layer is assumed to be small for our frequence range.

The necessity to develop economically feasible means to classify and extract subbottom sediments has increased steadily in recent years. Coupled with mineral, sand, and gravel extraction is the desire to determine the engineering properties of the sedinents for offshore construction purposes. Some data on the elastic properties of ocean sediments has recently been obtained by Hamlton [4]. The sediments analyzed were from North Pacific areas, however, the measured and comuted pronerties should be valid for similar sediments elsewhere. Table I Indicates Hamilton's results which are of interest in our theoretical formulation.

Using a simple harmonic potnt source for excitation, we will develon an acoustic response systom for a semi-infintte lifuid overlvino a viscoelastic halfispace. The theoretical model erployed in this thesis is govemed closely by the experimental viemotnt. Surface reflections occur well after first returns for near bottom sensinf, thus enabling us to consider the hydrodynamic fleld as being infinite in derth. To account for attenuation phenonena, it is desirable to consider Voiet darrine in the viscoelastic fleld. This is introduced by taking the Lane namaneters to be of the form $\lambda=\lambda^{\prime}+\lambda^{\prime \prime} \frac{\partial}{\partial+}$, or $\lambda=\lambda^{\prime}+1 w \lambda^{\prime \prime}$ in the frenuency domain.

Theoretical develonment berins by comuting the noner bourforBessel transformed Green's Function for one viscoelastic layer and infintte liquid depth from the meneral expression obtained by Marnuson and stettart [8]. Subsequently, the proper contour is chosen and the inverse transform is performed. Higher order branch line contributions are expressed as a sertes
Table 1. Average Neasured and Computed Elastic Constants for North Pacific

of Gamma Functions, and perturbation theory is used to compute the undamped Stoneley wave velocity.

Previous investigations of this twpe have been undertaken by Pekeris [10], who investigated the response due to a point source in a liquid overlying another 11quid. Similarly Press and Ewing [2] Investigated the model discussed in this thesis, but neplected branch line contributions. The branch line Integrals were later evaluated by Fonda anci Nakamura [5]. Most recently, Mamuson and Stewart [8] have develoned a general multilayer recurrence relation suitable for comuter analysis.

CHAPTER II

THEORETICAL DEVELOPMETT

1. Green's Function Formalism

We will determine the actual Green's Function for a semi-infinite liquid overlying a viscoelastic halfsoace for the special case of normal incidence. The general Fourier-Bessel transformed Green's Function as taken from equation (18) of Mapmuson and Stewart [8] reads as follows:
$\underline{G}\left(\zeta_{,}, z_{>}, z_{<}, \omega\right)=\frac{2}{4 \pi a_{0}} \sinh \left[a_{0}\left(h_{0}-z_{>}\right)\right]\left\{\frac{K_{1} a_{0} \cosh \left[a_{0} z_{<}\right]-K_{2} \rho_{0} \omega^{2} \sinh \left[a_{0} z_{c}\right]}{K_{1} a_{0} \cosh \left[a_{0} h_{0}\right]-K_{2} \rho_{0}{ }^{\omega} \sinh \left[a_{0} h_{0}\right]}\right\}$
where for one viscoelastic laver

$$
K_{1}=o_{1} c_{T}^{2}\left[\left(2 r_{2}^{2}-r_{T}^{2}\right)^{2}-4 a_{[} a_{T} r^{2}\right] \quad \text { (1.1-a) }
$$

and

$$
K_{2}=-a_{L} k_{T}^{2} \quad(1.1-b)
$$

The functions $a_{0, L, T}$ are given by the following exnressions:

$$
\begin{aligned}
& a_{0}=\sqrt{\zeta^{2}-K_{0}^{2}} \\
& a_{L}=\sqrt{5^{2}-K_{L}^{2}} \\
& a_{T}=\sqrt{\zeta^{2}-K_{T}^{2}}
\end{aligned}
$$

For the case of an unbounded fluid, h_{o} is taken to infinity and equation (1.1) (upon expansion of sinh and coch terms) reduces to:

$$
\begin{equation*}
\underline{G}\left(\zeta, z_{>}, z_{<}, \omega\right)=\frac{1}{4 \pi a_{0}}\left[e^{-a_{0}\left(z_{\nu}-z_{\alpha}\right)}+e^{-a_{0}\left(z_{>}+z_{<}\right)} \frac{\left.\left(\frac{K_{1} a_{0}+K_{2} 0_{0} \omega^{2}}{K_{1} a_{0}-K_{2} م_{0} \omega^{2}}\right)\right]}{}\right. \tag{1.2}
\end{equation*}
$$

The flrst term in equation (1.2) represents the wave travelling drectily from the source to the recelver, while the second term represents the contribution due to the viscoelastic halfspace. Substituting equations (1.1-a) and (1.1-b) into equation (1.1) and noting from fipure 1 that $z_{>}=z_{\text {max }}=h$ and $z_{<}=z_{\text {min }}=z$, the Green's Function becomes:

$$
\begin{equation*}
G(\zeta, z, h, \omega)=\frac{1}{4 \pi}\left[\frac{e^{-a_{0}(h-z)}}{a_{0}}+\frac{e^{-a_{0}(h+z)}}{a_{0}} \frac{N\left(\zeta^{2}\right)}{D\left(\zeta^{2}\right)}\right] \tag{1.3}
\end{equation*}
$$

where
and

$$
\begin{equation*}
N\left(\zeta^{2}\right)=a_{0} m\left[\left(2 \zeta^{2}-K_{T}^{2}\right)^{2}-4 a_{L} a_{T} \zeta^{2}\right]-a_{T} K_{T}^{4} \tag{1.3-a}
\end{equation*}
$$

Performing the inverse transform on the primary stimulation or direct wave term in equation (1.3) will yield accordine to Somerfeld [11]:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{1}{4 \pi a_{0}} e^{-a_{0}(h-z)} J_{0}(\zeta r) \zeta \alpha \zeta=\frac{1}{4 \pi(h-z)} e^{-1 K_{0}(h-z)} \tag{1.4}
\end{equation*}
$$

The main objective of this investigation is to determine the inverse transform for the second term in equation (1.3). Noting this residual. term as \underline{G}^{\prime} we may write:

$$
\begin{equation*}
G^{\prime}(r, z, h, \omega)=\int_{0}^{\infty} G^{\prime}(\zeta, z, h, \omega) J_{0}(\zeta r) \zeta d \zeta \tag{1.5}
\end{equation*}
$$

For the case of normal incidence $(r=0), T_{0}(\zeta r) \rightarrow 1$, and equation (1.5)

Geometry of Normal Incidence Acoustic Pesnonse System: Semi-Infinite Liquid Over a Viscoelastic Falfsnace

FIGURE 1.
simplifies to:

$$
\begin{equation*}
G^{\prime}=\int_{0}^{\infty} \underline{G}^{\prime} \zeta d \zeta \tag{1.6}
\end{equation*}
$$

2. Application of Contour Interration

We choose to integrate the interral (1.6) in the complex
($\xi=\zeta+i n$) plane. We write a contour interral from equation (1.6) as follows:

$$
\begin{equation*}
I=\oint_{0}^{\infty} \frac{e^{-a_{0}(h+z)}}{a_{0}} \frac{N\left(\xi^{2}\right)}{D\left(\xi^{2}\right)} \xi d \xi \tag{2.1}
\end{equation*}
$$

Branch point sinpularities of the integrand occur at $\xi= \pm K_{O, L, T}$. The poles of equation (2.1) are given by

$$
\begin{equation*}
D\left(\xi^{2}\right)=0 \tag{2.2}
\end{equation*}
$$

Strick and Ginsbare, [12] numerically obtained one real root, renresentire a Stoneley wave contribution, for equation (2.2). The effect of the Votrt type darume employed in this treatment is that the nole and K_{L}, T were pulled silghtly off the real axis into the fourth ouadrant.

Having determined the singularities in equation (2.1), we muct no: select an appropriate contour. Careful examination of the exnonential term in equation (2.1) shows that we must keep $P_{e}\left\{a_{0}\right\}>0$ for converrence. Somerfeld's [11] radiation condition is satinfled by keenine $I_{m}\left\{a_{0}\right\}>0$. We draw the contour as shown in Fipure 2. Anplyine Cauchy's theorem to equation (2.1) for the path shom in ripure 2 and notine that the contritution

Contour of Integration for Enuation (2.1)
FICTURE 2
along the quadrant vanishes (see Appendix A) we obtain as follows:

$$
\begin{gather*}
\oint_{0}^{\infty} \frac{e^{-a_{0}(z+h)}}{a_{0}} \frac{N\left(\xi^{2}\right)}{D\left(\xi^{2}\right)} \xi d \xi=\int_{0}^{\infty} \frac{e^{-a_{0}(z+h)}}{a_{0}} \frac{N\left(\xi^{2}\right)}{D\left(\zeta^{2}\right)} \zeta d \zeta+\int_{-1 \infty}^{0} \frac{e^{-a_{0}(z+h)}}{a_{0}} \frac{N\left[(-1 n)^{2}\right]}{D\left[(-1 n)^{2}\right]} i n d i n+ \\
I_{L_{1}}+I_{L_{2}}+I_{L_{3}}=-2 \pi i \times \text { Residue } \tag{2.3}
\end{gather*}
$$

Solving for the real axis contribution, which represents the Green's Function, will yield

$$
\begin{equation*}
\int_{0}^{\infty} \frac{e^{-a_{0}(z+h)}}{a_{0}} \frac{N\left(\zeta^{2}\right)}{D\left(\zeta^{2}\right)} \zeta d \zeta=-\int_{-i \infty}^{0} \frac{e^{-a_{0}(z+h)}}{a_{0}} \frac{N\left[(-i n)^{2}\right]}{D\left[(-i n)^{2}\right.} i n d i n-I_{L_{1}}-I_{L_{2}}-I_{L_{3}}-2 \pi i R \tag{2.4}
\end{equation*}
$$

3. Evaluation of Residue Contribution

The residue term in equation (2.4) is given by the formula:

$$
\begin{equation*}
R=\lim _{\xi \rightarrow \xi_{0}}\left[\frac{e^{-a_{0}(z+h)}}{a_{0}}\left(\xi-\xi_{0}\right) \frac{N\left(\xi^{2}\right)}{D\left(\xi^{2}\right)} \xi\right] \tag{3.1}
\end{equation*}
$$

where ξ_{0} is the value at which $D\left(\xi^{2}\right) \rightarrow 0$. It should be clear that the residue in its present form is indeterminate. Apriving L'Hosnital's Rule we obtain:

$$
\begin{equation*}
\mathrm{R}=\lim _{\xi \rightarrow \xi_{0}}\left[\frac{e^{-a_{0}(z+h)}}{a_{0}} \frac{\xi \mathrm{~N}\left(\xi^{2}\right)}{\frac{\mathrm{d}}{\mathrm{~d} \xi} \mathrm{D}\left(\xi^{2}\right)}\right] \tag{3.1-a}
\end{equation*}
$$

In general any point in the ξ plane represents a wave number for a certain mode of vibration; i.e., $\xi=\frac{\omega}{c}$. At the pole, the phase velocity represents the propagation speed of Stoneley waves at the interface. To evaluate the residue contribution, we first determine the nhase velocity of these surface waves. From equation (1.3-b) we write:

$$
\begin{gather*}
D\left(\xi^{2}\right)=0=m\left(\xi^{2}-K_{0}^{2}\right)^{1 / 2}\left[\left(2 \xi^{2}-K_{T}^{2}\right)^{2}-4 \xi^{2}\left(\xi^{2}-K_{L}^{2}\right)^{1 / 2}\left(\xi^{2}-K_{T}^{2}\right)^{1 / 2}\right]+ \\
K_{T}^{4}\left(\xi^{2}-K_{L}^{2}\right)^{1 / 2} \tag{3.2}
\end{gather*}
$$

Recalling the expressions for the wave numbers:

$$
\begin{align*}
& K_{0}=\frac{\omega}{c_{0}} \\
& K_{L}=\frac{\omega}{c_{L}} \tag{3.3-b}\\
& K_{\mathrm{T}}=\frac{\omega}{c_{T}}
\end{align*}
$$

Using equations (3.3a-c), equation (3.2) simplifies to read

$$
\begin{gather*}
0=m\left(1-\left(\frac{c}{c_{0}}\right)^{2}\right)^{1 / 2}\left[\left(2-\left(\frac{c}{c_{T}}\right)^{2}\right)^{2}-4\left(1-\left(\frac{c}{c_{L}}\right)^{2}\right)^{1 / 2}\left(1-\left(\frac{c}{c_{T}}\right)^{2}\right)^{1 / 2}\right]+ \\
\left(\frac{c}{c_{T}}\right)^{4}\left(1-\left(\frac{c}{c_{L}}\right)^{2}\right)^{1 / 2} \tag{3.4}
\end{gather*}
$$

Equation (3.4) represents the frequency independent model equation at the pole. The undamped phase velocity is determined by using nerturhation techniques (see Appendix B). The result is that the phase velocity equals the transverse wave velocity to first order in ε. The fect that
$c=c_{T}$ enables us to conclude that:

$$
\begin{equation*}
a_{T}=\left(\xi^{2}-\frac{\omega^{2}}{c_{T}^{2}}\right)^{1 / 2}=\left(\frac{\omega^{2}}{c^{2}}-\frac{\omega^{2}}{c_{T}^{2}}\right)^{1 / 2}=0 \tag{3.5}
\end{equation*}
$$

The residue is evaluated by first computing $\frac{d}{d \xi} D\left(\xi^{2}\right)$. Using the chain rule we may write

$$
\begin{equation*}
\frac{d}{d \xi} D\left(\xi^{2}\right)=\frac{d \psi}{d \xi} \cdot \frac{d D(\psi)}{d \psi} \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi=\xi^{2} \tag{3.6-a}
\end{equation*}
$$

and

$$
\begin{equation*}
D(\psi)=\left(\psi-K_{o}^{2}\right)^{1 / 2} m\left[\left(2 \psi-K_{\mathrm{R}}^{2}\right)^{2}-4 \psi\left(\psi-K_{L}^{2}\right)^{1 / 2}\left(\psi-K_{\mathrm{T}}^{2}\right)^{1 / 2}\right]+K_{\mathrm{T}}^{4}\left(\psi-K_{L_{1}}^{2}\right)^{1 / 2} \tag{3.6-b}
\end{equation*}
$$

Using equations (3.6-a) and (3.6-b) we mav expand equation (3.6) as follows:

$$
\begin{gather*}
\frac{d}{d \xi} D\left(\xi^{2}\right)=2 \xi\left\{\frac{m}{2 a_{0}}\left[\left(2 \psi-K_{T}^{2}\right)^{2}-4 \psi\left(\psi-K_{L}^{2}\right)^{1 / 2}\left\langle\psi-K_{T}^{2}\right)^{1 / 2}\right]+\right. \\
\left.m a_{0}\left[4\left(2 \psi-K_{T}^{2}\right)-4\left(a_{L} a_{T}+\frac{a_{T} \psi}{2 a_{L}}+\frac{a_{L}{ }^{\psi}}{2 \varepsilon_{T}}\right)\right]+\frac{K_{T}^{4}}{2 a_{L}}\right\} \tag{3.7}
\end{gather*}
$$

Applying the result in equation (3.5) to equation (3.7) we note that the term $\frac{a_{L} \psi}{2 a_{T}} \rightarrow \infty$. It follows from equation (3.1-a) that the residue contribution vanishes. Computing the exact value of the whase velocitv from equation (3.4) would yield a small residue contribution.

4. Branch Ine Interrations

We wish to evaluate the line intermals L_{1}, L_{2}, and T_{3} in equation (2.4) on the paths shown in fipure 2. We booin by
discussing the interral for the branch point at $\xi=K_{0}$.

1) Line Interral for Path L_{2} : From equation (2.4) we mav write the integral as

$$
\begin{equation*}
I_{L_{2}}=\int_{L_{2}} \frac{e^{-a_{0}(z+h)}}{a_{0}} \frac{N\left(\xi^{2}\right)}{D\left(\xi^{2}\right)} \xi d \xi \tag{4.1}
\end{equation*}
$$

The path of integration for equation (4.1) is indicated below.

We recall that a_{0} and ξ are related as follows:

$$
\begin{equation*}
a_{0}^{2}=\xi^{2}-k_{0}^{2} \tag{4.2}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
a_{0} d a_{0}=\xi d \xi \tag{4.3}
\end{equation*}
$$

Applyfng equations (4.2) and (4.3) to the interral (4.1) we may chance variables of integration so that the integral reads

$$
\begin{equation*}
I_{L_{2}}=\int_{L_{2}} e^{-a_{0}(z+h)} \frac{N\left(a_{0}^{2}\right)}{D\left(a_{0}^{2}\right)} d a_{0} \tag{4,4}
\end{equation*}
$$

Along the path $A B$ we write

$$
a_{0}=-i n_{0}
$$

where n_{0} is the distance from the branch noint. The arrument of a_{0} increases by 2π when passing from $A B$ to $C D$. Hence, we may say that along $C D$

$$
a_{0}=-i n_{0} e^{12 \pi}
$$

It should be clear that $a_{0}^{2}=-n_{0}^{2}$ on both sides of the branch cut. Integrating along n_{0} gives us symbolically

$$
\begin{equation*}
I_{L_{2}}=\int_{A B}() d n_{0}+\int_{C D}() d n_{0}=\int_{\infty}^{0}() d n_{0}+\int_{0}^{\infty}() d n_{0}=0 \tag{4.5}
\end{equation*}
$$

Contributions on the two sides of the cut cancel, resuiting in $\mathrm{I}_{\mathrm{L}_{2}}=0$.
2) Ine Intepral for Path I_{1} : The nath of intepration L_{1} for the branch point $\xi=K_{\mathrm{L}}$ is indicated below.

Again we choose to interrate with respect to the variable a_{0}. Prom
equations (2.4) and (4.3), the intepral reads

$$
\begin{equation*}
I_{L_{2}}=\int_{L_{2}} e^{-a_{0}(z+h)} \frac{N\left(a_{0}^{2}\right)}{D\left(a_{0}^{2}\right)} d a_{0} \tag{4,6}
\end{equation*}
$$

The value of the integration variable a_{0} at the branch point is f iven bv

$$
\begin{equation*}
a_{L}=\left(\xi^{2}-K_{0}^{2}\right)^{1 / 2}=\left(K_{L}^{2}-K_{o}^{2}\right)^{1 / 2} \tag{4.7}
\end{equation*}
$$

Using equation (4.7), on the portion $A B$ we prite

$$
\begin{equation*}
a_{0}=\alpha_{L}-1 n_{L} \tag{4.8}
\end{equation*}
$$

and on CD

$$
\begin{equation*}
a_{0}=a_{L}-i n_{L} e^{12 \pi} \tag{4.9}
\end{equation*}
$$

Applying the change in variables for the nuantity $\left(\xi^{2}-K_{L}^{2}\right)^{1 / 2}$ will vield the following on AB :

$$
\begin{equation*}
\left(\xi^{2}-K_{L}^{2}\right)^{1 / 2}=\left(-21 \eta_{L} \alpha_{L}-\eta_{L}^{2}\right)^{1 / 2}=a_{L} \tag{4.10}
\end{equation*}
$$

and on CD:

$$
\begin{equation*}
\left(\xi^{2}-K_{L}^{2}\right)^{1 / 2}=e^{i \pi}\left(-2 i \pi_{L} a_{L}-n_{L}^{2}\right)^{1 / 2}=-a_{L} \tag{4.21}
\end{equation*}
$$

Since the quantity a_{L} chanpes sign from one side of the cut to the other, there is a discontinuity in the integrand. Using equations (4.10) and (4.11) one writes the integral (4.6) as follows:

$$
I_{L_{2}}=\int_{a_{L}-i \infty}^{\alpha_{L}} e^{-a_{0}(z+h)^{N\left(a_{0}^{2}, a_{L}\right)}} \frac{D\left(a_{0}^{2}, a_{L}\right)}{a_{0}}+\int_{\alpha}^{a_{L}-1 \infty} e^{-a_{0}(z+h)^{N\left(a_{0}^{2},-a_{L}\right)}} \frac{D\left(a_{0}^{2},-a_{I}\right)}{L_{0}} d a_{0}=
$$

$$
\begin{equation*}
\int_{a_{L}}^{\alpha_{L}^{-i \infty}} e^{-a_{0}(z+h)}\left[\frac{N\left(a_{0}^{2},-a_{L}\right)}{D\left(a_{0}^{2},-a_{L}\right.}-\frac{N\left(a_{0}^{2}, a_{L}\right)}{D\left(a_{0}^{2}, a_{L}\right)}\right]=\int_{a_{L}}^{a_{L}-i \infty} e^{-a_{0}(z+h)} a_{L} F\left(a_{0}^{2}\right) d a_{0} \tag{4.12}
\end{equation*}
$$

We now expand

$$
\begin{equation*}
F\left(a_{0}^{2}\right)=F\left(\left(a_{L}-i \eta_{L}\right)^{2}\right)=A+B \eta_{L}+C n_{L}^{2}+\cdots \tag{4.13-a}
\end{equation*}
$$

and

$$
\begin{gather*}
a_{L}=\left(-21 n_{L} \alpha_{L}-n_{L}^{2}\right)^{1 / 2}=1^{3 / 2}\left(2 a_{L}\right)^{1 / 2}\left(n_{L}\right)^{1 / 2}\left(1-\frac{1 n_{L}}{2 \alpha_{L}}\right)= \\
1^{3 / 2}\left(2 a_{L}\right)^{1 / 2}\left(n_{L}\right)^{1 / 2}\left[1-\frac{1 n_{L}}{4 \alpha_{L}}+\cdots\right] \tag{4.13-6}
\end{gather*}
$$

Recalling that $d a_{0}=-1 d n_{L}$, we integrate equation (4.12) alone n_{L} and obtain

$$
\begin{align*}
& I_{L_{2}}=-1 \int_{0}^{\infty} e^{-\left(\alpha_{L}-i n_{L}\right)(z+h)}\left[1^{3 / 2}\left(2 a_{L}\right)^{1 / 2}\left(r_{L}\right)^{1 / 2}\left(1-\frac{i n_{L}}{4 \alpha_{L}}+\cdots\right)\left(A+i \eta_{L}+\cdots\right) n_{L}\right. \\
& =1^{1 / 2}\left(2 a_{L}\right)^{1 / 2} e^{-\alpha_{L}(z+h)} \int_{0}^{\infty} e^{1 n_{L}(z+h)}\left[A_{1}^{\prime}+A_{2}^{\prime} n_{L}+A_{3} n_{L}^{2}+\cdots\right]\left(n_{L}\right)^{1 / 2} d n_{L} \\
& =1^{1 / 2}\left(2 \alpha_{L}\right)^{1 / 2} e^{-\alpha_{L}(z+h)} \int_{0}^{\infty} e^{1 n_{L}(z+h)} A_{n^{\prime} n_{L}}^{2 n-1}{ }^{2} d n_{L} \tag{4.14}
\end{align*}
$$

To obtain the expression for the integrals in equation (4.14), we choose to integrate in the cornlex ($\alpha=\eta_{L}+i \rho$) nlane on the contour shom in Figure 3. Anplying Cauchy's Theorem around the nath, and noting that

Contour of Interration for Equation (4.14)

FIMRPE 3
the contribution along the quadrant again vanishes, we obtain the following:

$$
\int e^{1 \sigma(z+h)_{\sigma} \frac{2 n-1}{2}} d \sigma=\int_{0}^{\infty} e^{-n_{L}(z+h)} \frac{\frac{2 n-1}{2}}{n_{L}} d n_{L}+\int_{\infty}^{0} e^{1 R e^{1 \pi / 2}(z+h)}\left(R e^{1 \pi / 2)^{\frac{2 n-1}{2}}} e^{1 \pi / 2} d R=0\right.
$$

Solving for the real axis contribution in equation (4.15) will yield

$$
\begin{equation*}
\int_{0}^{\infty} e^{i n_{L}(z+h)} \frac{2 n-1}{n_{L}} d n_{L}=1 \int_{0}^{\infty} e^{1 \pi / 4(2 n-1)} e^{-R(z+h)_{R} \frac{2 n-1}{2} d R} \tag{4.16}
\end{equation*}
$$

Recalling the expression for the Garma Function

$$
\begin{equation*}
r(z)=\int_{0}^{\infty} e^{-u} u^{z-1} d u \tag{4,17}
\end{equation*}
$$

Applying enuation (4.17) to equation (4.16) will yield

$$
\begin{equation*}
\int_{0}^{\infty} e^{1 n_{L}(z+h)} \frac{\frac{2 n-1}{2}}{n_{L}} d n_{L}=\sum_{n=1}^{\infty} \frac{1 e^{1 \frac{\pi}{4}(2 n-1)}}{z+h} r\left(n+\frac{1}{2}\right) \tag{4.18}
\end{equation*}
$$

The constant. A_{n}^{\prime} in equation (4.24) rust be determined to complete the solution of the branch line integral L_{2}. It should be clear that the lowest order constent A_{1}^{\prime} mav be obtained by evaluating equation (4.13-a) at the branch point $\left(n_{L}=0\right)$. The result (see Anpendix C) is grven by

$$
\begin{equation*}
A_{1}^{\prime}=\frac{4 K_{T}^{4}}{m a_{L}\left(2 K_{L_{-}}^{2}-K_{T}^{2}\right)} \tag{4.19}
\end{equation*}
$$

Using the results of equations (4.18) and (4.19) the branch line intermal in lowest order form will read as follows:

$$
\begin{equation*}
I_{L_{2}}=i^{3 / 2}\left(2 a_{L}\right)^{1 / 2} e^{-a_{L}(z+h)}\left[\frac{4 Y_{T}^{4}}{m a_{L}\left(2 K_{L}^{2}-K_{T}^{2}\right)}\right] \frac{e^{1 \pi / 4}}{z+h^{(\pi)}}{ }^{1 / 2} \tag{4.20}
\end{equation*}
$$

3) Line Interral for Path L_{3}; The nath of interration L_{3} for the branch point $\varepsilon_{5}=K_{\mathrm{I}}$ is indicated below.

The interral upon chancine varlables will reed

$$
\begin{equation*}
I_{L_{3}}=\int_{L_{3}} e^{-a_{0}(z+h)} \frac{N\left(a_{0}^{2}\right)}{D\left(a_{0}^{2}\right)} d a_{0} \tag{4.21}
\end{equation*}
$$

The value of the variable a_{0} at the branch point is riven bv

$$
\begin{equation*}
a_{T}=\left(K_{T}^{2}-K_{0}^{2}\right)^{1 / 2} \tag{4.22}
\end{equation*}
$$

Usine equation (4.22), on the portion $A B$ we may write

$$
\begin{equation*}
a_{0}=a_{T_{1}}-1 n_{T} \tag{4.23}
\end{equation*}
$$

and on $C D$

$$
\begin{equation*}
a_{0}=a_{T}-\ln n_{T} e^{i 2 \pi} \tag{41}
\end{equation*}
$$

Applying the chanpe in variables for the quantity $\left(\xi^{2}-K_{T}^{2}\right)^{1 / 2}$ will yield the following on $A B$:

$$
\begin{equation*}
\left.\left(\xi^{2}-K_{T}^{2}\right)^{1 / 2}=\left(-21 n_{T} a_{T}-n_{T}\right)^{2}\right)^{1 / 2}=a_{T} \tag{4.25}
\end{equation*}
$$

and on CD:

$$
\begin{equation*}
\left(\xi^{2}-K_{T}^{2}\right)^{1 / 2}=e^{i \pi}\left(-21 n_{T} a_{T},-\eta_{T}^{2}\right)=-a_{T} \tag{4.26}
\end{equation*}
$$

Applying these results to the integral exactiy as done in the precedinf section will yield

$$
\begin{equation*}
I_{L_{3}}=1^{1 / 2}\left(2 \alpha_{T}\right)^{1 / 2} e^{-\alpha_{D}(z+h)} \int_{0}^{\infty} e^{1 n_{r}(z+h)} B_{n}^{\prime} \frac{2 n-1}{2} d_{\Gamma} n_{T} \tag{4.27}
\end{equation*}
$$

It should be clear that the intefral terms are exactly of the same form as equation (4.28). The lowest order constant B_{1}^{\prime} is now determined (see Appendix D), and the branch line intepral $I_{L_{3}}$ is written in lorest order form as:

$$
\begin{equation*}
I_{L_{3}}=-1^{3 / 2}\left(2 a_{T}\right)^{1 / 2} e^{-\alpha_{T}(z+h)}\left[\frac{16 \alpha_{T} n 2_{L}^{2}}{k_{T}^{2}\left(\alpha_{T} m+a_{L}\right)^{2}}\right] \frac{e^{i \pi / 4}(\pi)^{1 / 2}}{z+h} \tag{4.28}
\end{equation*}
$$

5. Evaluation of the Integral Alone the Imarinary Axis

From equation (2.3), the interralalong the imarinary axis in
Figure 2 is given by the following expression:

$$
\begin{equation*}
I_{i n}=\int_{-1 \infty}^{0} \frac{e^{-a_{0}(z+h)}}{a_{0}} \frac{N\left(-n^{2}\right)}{D\left(-n^{2}\right)} \operatorname{ind}(\operatorname{in}) \tag{5.1}
\end{equation*}
$$

If we integrate along the variable n, equation (5.1) becones
$I_{1_{n}}=\int_{-\infty}^{0} \frac{e^{-1\left(\eta^{2}+K_{0}^{2}\right)^{1 / 2}(z+h)}}{1\left(\eta^{2}+K_{0}^{2}\right)^{1 / 2}} \frac{N\left(-\eta^{2}\right)}{D\left(-n^{2}\right)}-n d \eta=\int_{0}^{-\infty} \frac{e^{-1\left(\eta^{2}+K_{0}^{2}\right)^{1 / 2}(z+h)} N\left(-n^{2}\right)}{1\left(n^{2}+K_{0}^{2}\right)^{1 / 2} N\left(-n^{2}\right)} d n$
Since the integrand in equation (5.2) is odd in η, the urper limit may be changed from $-\infty \rightarrow+\infty$ without any loss of penerality. Enuation (5.2) now reads

$$
\begin{equation*}
I_{i}=\int_{0}^{\infty} \frac{e^{-1\left(n^{2}+K_{0}^{2}\right)^{1 / 2}(z+h)}}{i\left(n^{2}+K_{0}^{2}\right)^{1 / 2}} \frac{N\left(-n^{2}\right)}{D\left(-n^{2}\right)} n d n \tag{5.2-a}
\end{equation*}
$$

where from equations (1.3-a) and (1.3-b)
$N\left(-n^{2}\right)=1\left[\left(n^{2}+K_{o}^{2}\right)^{1 / 2} m\left(\left(2 n^{2}+K_{T}^{2}\right)^{2}-4 n^{2}\left(n^{2}+K_{L}^{2}\right)^{1 / 2}\left(n^{2}+K_{T}^{2}\right)^{1 / 2}\right)-K_{L}^{4}\left(n^{2}+K_{L}^{2}\right)^{1 / 2}\right]$
and
$D\left(-n^{2}\right)=1\left[\left(n^{2}+K_{o}^{2}\right)^{1 / 2} m\left(\left(2 n^{2}+K_{T}^{2}\right)^{2}-4 n^{2}\left(n^{2}+K_{L}^{2}\right)^{1 / 2}\left(n^{2}+H_{T}^{2}\right)^{1 / 2}\right)+K_{T}^{4}\left(\eta^{2}+H_{L}^{2}\right)^{1 / 2}\right]$
Since the interrand of equation (5.2-a) is of the form $\int_{a}^{b} e^{i x h(n)} a(n) d n$, where x is large, it is desirable to interrate by the method of stationary phase. The major contribution to the Interral results from the noint of stationarity, i.e., $h(n)=0$. From equation (5.2-a) we write

$$
\begin{equation*}
h(n)=\left(n^{2}+K_{0}^{2}\right)^{1 / 2}=K_{0}\left(1+\eta^{2} K_{0}^{-2}\right)^{1 / 2} \tag{5.4-a}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
h^{\prime}(n)=\frac{h}{K_{0}\left(1+n^{2} K_{0}^{-2}\right)^{1 / 2}} \tag{5.4-b}
\end{equation*}
$$

and

$$
\begin{equation*}
h^{\prime \prime}(n)=\frac{-n^{2}}{K_{0}^{2}}\left(1+{ }^{2} K_{0}^{-2}\right)^{-3 / 2}+\frac{1}{K_{0}}\left(1+n_{0}^{2} K_{0}^{-2}\right)^{1 / 2} \tag{5.4-c}
\end{equation*}
$$

From equation (5.4-b) we note that the noint of stationarity is given by $n_{0}=0$. Expanding equation (5.4-a) about this notnt will yield

$$
\begin{equation*}
h(n)=h\left(n_{0}\right)+\frac{h^{\prime \prime}\left(n_{0}\right)}{2}\left(n-n_{0}\right)^{2}+\cdots=K_{0}+\frac{n^{2}}{2 K_{0}}+\cdots \tag{5.5}
\end{equation*}
$$

From equation (5.2-a), the function $g(n)$ is given by

$$
\begin{equation*}
g(n)=\frac{N\left(-n^{2}\right)}{D\left(-n^{2}\right)} \frac{1}{\left(n^{2}+K_{0}^{2}\right)} \tag{5.6}
\end{equation*}
$$

Expandine equation (5.6) about the noint of stationarity will yield

$$
\begin{equation*}
g\left(n_{0}\right)=g(0)+\frac{d}{d n_{1}} g\left(n^{2}\right) \frac{\pi}{2}+\cdots \tag{5.7}
\end{equation*}
$$

where from equation (5.6)

$$
\begin{equation*}
g(0)=\frac{1}{K_{0}} \frac{N(0)}{D(0)}=\frac{1}{K_{0}}\left[\frac{o_{1} c_{1}{ }^{-0} o_{0} c_{1} c_{L}}{c_{0} o_{o}^{c} o}\right] \tag{5.8}
\end{equation*}
$$

Substituting the expanded functions in equations (5.5) and (5.7) into equation (5.2-a) will yield

$$
\begin{equation*}
I_{n}=\frac{-1 e^{-i K_{0}(z+h)}}{K_{0}} \int_{0}^{\infty} e^{-1 / 2 K_{0} \eta^{2}(z+h)}\left[\frac{0_{1} L_{1} L_{0}^{-c_{0} c_{0}}}{0_{1} L^{+r_{0}} c_{0}}\right] n d n \tag{5.9}
\end{equation*}
$$

The integrand of equation (5.9) is of the form $e^{u_{d}}$. Annlyinf this result,
the integral is evaluated as follows:

$$
\begin{align*}
& I_{1_{n}}=\frac{e^{-1 K_{0}(z+h)}}{z+h}\left[\frac{\rho_{1} c_{L}-o_{0} c_{0}}{o_{1} c_{L}^{+o_{0} c_{o}}} \int_{0}^{\infty} e^{\frac{-1 \eta^{2}(z+h)}{2 K_{0}}} \frac{-1 \eta(z+h)}{K_{0}} d \eta=\right. \\
& \frac{e^{-1 K_{0}(z+h)}}{z+h}-\left.\left[\frac{\rho_{1} L_{1} \rho_{o} c_{0}}{\rho_{1} L^{+\rho} o_{o} o_{0}}\right] e^{\frac{-1(z+h)}{2 K_{o}}} n^{2}\right|_{0} ^{\infty}= \\
& \frac{e^{-1 K_{0}(z+h)}}{z+h}\left[\frac{\rho_{1} c_{L}-\rho_{o} c_{o}}{\rho_{1} c_{L}+\rho_{o} c_{0}}\right] \tag{5.10}
\end{align*}
$$

6. The Complete Green's Function

Substitutint the results of equations (4.20), (4.28), and (5.10)
into equation (2.4) enables us to exoress the residual Green's Function term by the following, relation:

$$
\begin{aligned}
& G^{\prime}(r, z, h, \omega)=-1^{3 / 2}\left(2 \alpha_{L}\right)^{1 / 2} e^{-\alpha_{L}(z+h)}\left[\frac{4 K_{T}^{4}}{\operatorname{ma}_{L}\left(2 K_{L}^{2}-K_{T}^{2}\right)}\right] \frac{e^{1 \pi / 4}}{z+h} \pi^{1 / 2}+
\end{aligned}
$$

The first term of equation (6.1) correspoinding to the branch cut for the singularity at $\xi=K_{L}$ in Figure 2 warrants further investipation. We recall the expressions for the branch point singularities in tertis of
a_{0}

$$
\begin{align*}
& a_{0}=\left(\xi^{2}-K_{0}^{2}\right)^{1 / 2}=0 \tag{6.2-a}\\
& a_{L}=\left(K_{\mathrm{L}}^{2}-\mathrm{K}_{0}^{2}\right)^{1 / 2} \tag{6.2-b}\\
& \alpha_{\mathrm{T}}=\left(K_{\mathrm{T}}^{2}-\mathrm{K}_{0}^{2}\right)^{1 / 2} \tag{6.2-c}
\end{align*}
$$

The singularities of equation (6.2) are mapned into the a_{0} plane as shown in the following diapram.

Coordinates in the a_{0} plane have snecial simfficance in the contour integral of equation (2,4). The condition Refa $\}>0$ accounts for wave attenuation. Since the branch point $K_{\mathbb{Z}}$ anoears on the imapinary axis in the a_{o} plane, we are comelled to define this branch roint as an improper singularity. Anplying this result, efuation (6.1) becomes

$$
\begin{aligned}
& G^{\prime}(r, z, h, \omega)=\frac{1^{3 / 2} e^{i \pi / 4} e^{-\alpha_{T}(h+z)}\left(2 a_{m}\right)^{1 / 2} 16 m \pi a_{T}^{1 / 2} a_{\mathrm{L}}^{2}}{(h+z) K_{T}^{2}\left(\alpha_{\Gamma} \Gamma^{m+a_{L}}\right)^{2}}-
\end{aligned}
$$

The complete Green's Function, obtained by addinf; Sommerfeld's result for the direct wave contribution (given in equation (1.4)) reads as follows:

Equation (6.4) renresents the lovest order form of the Green's Function. In order to determine elastic versus viscoelastic effects in suhsenuent computer analvses, equation (6.4) must be separated into real and imarinarv components (see Anpendix E). The result for the elastic contribution is given by

$$
\begin{gathered}
G_{E}=\frac{1}{4 \pi}\left[\frac{e^{-1 K_{0}(h-z)}(h-z)}{\left(h-\frac{e^{-1 K_{0}(h+z)}\left(o_{1} \omega\right)^{2}-\left(o_{0} c_{0} K_{L O}\right)^{2}}{(h-z)}\right]-} \begin{array}{c}
\left(o_{1} \omega+o_{0} c_{0} K_{L O}\right)^{2}
\end{array}\right] \\
\frac{e^{-\alpha_{T}(h+z)}}{16 \sqrt{2 \pi}{ }^{1 / 2} \beta_{2}^{2} \beta_{1}^{3 / 2} K_{T_{0}}\left(m \beta_{1}+\beta_{2}\right)} \\
{\left[K_{T o}\left(m_{\beta}+\beta_{2}\right)^{2}\right]}
\end{gathered}
$$

and for the viscoelestic

$$
\begin{aligned}
& G_{V}=\frac{1 \varepsilon}{4 \pi} i-\frac{e^{-1 F_{0}(h+z)}}{(h+z)}\left[\frac{2 \omega o_{1} o_{0} c_{0} K_{L}^{\prime}}{\left(o_{1} \omega+o_{o} c_{o} K_{L O}\right)^{2}}\right] \\
& +\frac{\mathrm{e}^{-a_{1}(h+z)} 16 \sqrt{2 \mathrm{~m} \pi}{ }^{1 / 2} \beta_{2}\left[K_{\mathrm{To}}\left(m \rho_{1}+R_{2}\right)\left(2 \beta_{1}^{3 / 2} \beta_{3}-\frac{3}{2^{\beta}}{ }_{2} K_{\mathrm{To}} \mathrm{~K}_{\mathrm{T}}\right]\right.}{(\mathrm{h}+2)\left[K_{\mathrm{To}}{ }^{\left.\left(m R_{1}+\beta_{2}\right)\right]^{3}}\right.} \\
& \left.-\frac{e^{-a_{1}(h+z)} 32 \sqrt{2 \pi \pi}{ }^{1 / 2} \beta_{1}^{3 / 2} B_{2}^{2}\left[K_{T}^{\prime}\left(m \beta_{1}+\beta_{2}\right)+K_{T 0}\left(B_{3}+m Y_{T O} K_{T}^{\prime}\right)\right]}{(h+z)\left[K_{T o}\left(m \beta_{1}+\beta_{2}\right)\right]^{3}}\right\}
\end{aligned}
$$

CHAPTER III
FESULTS AND DISCUSSION

The expression for the actual Green's Punction characterizinr a semi-infinite linuid overlying, a viscoelastic halfsnace for the snecial case of normal incidence) has been determined. The resultant Fourier intefral is exnressed as the sum of a direct wave contribution, a branch line interration, and an imarinary axis inteoral. The branch Ine integral was evalueted and the result is exmessed as a series of famma Functions (equation 4.18). Results for the branch line interration concur with those of Honda and Nakamura [5], excent that in our case there is ro radial dependence and the wave numbers of the viscoelastic field ere complex. The intepral alone the imacinary axis was shom to be nomortion i
 of the Stonelev waves at the interface was determined usinm nomturbation techniques. The result was that the Stoneley waves nromapated at a sreed equal to that of the transverse shear wavos. The analvtic detormination of the Stoneley waves may surrest a basis for computer analvsis of the Stoneley rave equation.

The Green's Function obtained in this thesis clearly indicates the feasibility of classifvine subbottom sediments in terms of thefr physical parameters. We have determined the properies of the svstem and must now analvze the various outruts. The theoretial model empoved in this thesis has been closely povemed by tho oxnerirontal viownoint, since nomal incidence tosting mav be accomlished from a movinp research vessol. Recent computer analyses at the University of New bamshire indicate that
the normal incidence case may be valid for incidence anfles as jarme as 18°.

Subsequent analyses should account for a cormapated interface and inhomogeneitics in the viscoelastic medium. These reneralizations may be introduced using statistical methods and nerturbation theory. Usiner computer analysis and the work of Mamuson and Stewart [8], the model should be modified to account for the effects of an unlimited numher of lavers.

BIBI IOFPAPHY

1. Carrier, C. F., Krook, M. and Pearson, C. E., Functions of a Commlex Variable, Mchraw Hill Book Co., Inc., New York, 1966.
2. Ewine, W. M., Jardetzky, W. S., and Press, T., Elastlc waves in Lavered Medsa, Morraw Hill Book Co., Inc., New York, 1957.
3. Glanz, F., Mamuson, A., and Nichols, E., "Acoustic Fesmonses of a Viscoelastic Semfinfinite Medium Covered with a Iinuid Inver", Technical Momormand I, University of :Tew Iamshire, Aurust, la7n.
4. Hamilton, E. L., "Elastic Pronerties of Marine Sediments", Tournal of Geonhvical Research, Vol. 76, No. 2, Tanuarv 10, 1971.
5. Honda, H., and Nakamura, K., "On the Reflection and Pefraction or the Exnlosive Sounds at the Dcean Bottom, IT", Science Penorts, Toholo University, Fifth Series, Ceorhysics, Vol. 6, 1954.
6. Jeffries, H., and Teffries, B. S., "ethods of Mathematical musics, 3rd Ed., Cambridpe University Press, DCC2.
7. Marnuson, A. H., "The Classification and Tdentirication of Seriments on the Continental Shelf by pemote Acoustic ionsine: T. Sound Pronaration in a Semi-Infinite Incuid rverlvine a tomoreneous Viscoelastic Halfsrace", Proceedines of the T.E.E.E. Conference or Engineering in the Ocean Enviroment, Sentember, 1972, nn. 53n-535.
8. Mapmuson, A. H., and Stewart, T. K., "The Classiflcation and Tdentification or Sediments on the Contimental Sholf iv Pemte Acoustio Senstne: TI. Sound Pronapation in a Linutd Norlynr a tultiteremed V1scoelastic Halfsnace", Proceectnes of the T.F.E.E. Conference or Encineerine in the Ocean Envi roment, Senter or, 197?, nn. 537-542.
9. Officor, C. B., Introduction to the Theort of cuad Tronsmesten with Annlication to the ncean, perram hin Boo o., Inc., Tow vor, ing?
10. Pekeris, C. L., "Theom of Pronaration on Exnlostve Sound fa Shallow Water ${ }^{\dagger 1}$, Feolomical Society of America, Memotr 27, Notoher 15, 1043.
11. Sommerfeld, A., Partial Mfferential Fuations in Phustes, Academtc Press, Inc., Few Vork, 1047.
12. Strick, E., and rinsbarg, A. S., "Stonelev wave velocttos for a buldSolid Interface", Bulletin of the Selsmolorical Eocietv of Ampr!ca, Vol. 46, 1956.

APPENDIX A
 VANISHING DNTEGRAND ALONG THE QLADPANS

Along the quadrant in Fipure 2 the exnonentsal of the interrand in equation (2.3) of the text is simplified as follows:
$e^{-a_{0}(z+h)}=e^{-\xi(z+h)}=e^{-R(\cos \theta+i \sin \theta)(z+h)}=e^{-R \cos \theta(z+h)} e^{-1 R \sin \theta(z+h)}(A-1)$
As R is taken to infintty, $e^{-i \sin \theta(z+h)}$ would renresent a rantdly oscillatine function with self-canceling contributions. Simultaneous?r, $-R \cos 0(z+h)$
the e tem converges to zero. Thus we mav onnclude thame is no contribution to the interral alone the nuarrant.

APPEDDIX B

ANALYTICAL DETEPMTNATION OF SMOTELEY WAVE WELOCIMTV USTIG PERTURBATION TECHNTOUES

We note that for our oarticular case of interest, as seen from the values in Table 1, the following inequalities hold:

$$
\begin{gather*}
c_{L}>c_{0}>c_{T} \tag{B-1a}\\
\mu_{1} \ll \lambda_{1} \tag{B-1~b}
\end{gather*}
$$

From equation ($B-1 b$) we define the small paraneter

$$
\begin{equation*}
\varepsilon_{1}=\frac{\mu_{1}}{\lambda_{1}} \tag{R-2}
\end{equation*}
$$

Recallinf the exrressions for the monaration velocities

$$
\begin{gather*}
c_{0}^{2}=\frac{\lambda_{0}}{o_{0}} \tag{B-3a}\\
c_{L}^{2}=\frac{\lambda_{1}+2 \mu_{1}}{\rho_{1}} \tag{8-3h}\\
c_{T}^{2}=\frac{\mu_{1}}{\rho_{1}} \tag{B-3c}
\end{gather*}
$$

The ratio of the smuares of the pronaration velocities in the viscoelastic medium may be anoroximated as follors:

$$
\begin{equation*}
\frac{c_{T}^{2}}{c_{L}^{2}}=\frac{\mu_{1}}{\lambda_{1}+\mu_{2}}=\frac{\lambda_{1} \varepsilon_{1}}{\lambda_{1}+\frac{2 \lambda_{1} \varepsilon_{1}}{\lambda_{1}}}=\varepsilon_{1} \tag{B-4}
\end{equation*}
$$

or

$$
\begin{equation*}
c_{T}^{2}=\varepsilon_{1} c_{L}^{2} \tag{P-4n}
\end{equation*}
$$

Using the results of Hamiton [4] in Tarle 1 the comressional weve velocities in the two media may be related by a second nerturbation parameter as follows:

$$
\begin{equation*}
c_{L}^{2}=c_{0}^{2}\left(1+\varepsilon_{2}\right) \tag{B-5}
\end{equation*}
$$

Table 2 contains exmicit values of the nerturbation parameters ε_{1} and E_{2} for the sediments considered in Table 1. Also Included are the corresponding Stonelev wave velocities as obtelned from the experfmenta? data of Strick and Cinsbarp: [12]. We recell that the modal equation at the pole is oiven by
$0=m\left(1-\left(\frac{c_{-}}{c_{0}}\right)^{2}\right)^{1 / 2}\left[\left(2-\left(\frac{c_{-}}{c_{T}}\right)^{2}\right)^{2}-4\left(1-\left(\frac{c}{c_{\mathrm{L}}}\right)^{2}\right)^{1 / 2}\left(1-\left(\frac{c_{T}}{c_{\mathrm{T}}}\right)^{2}\right)^{1 / 2}\right]+\left(\frac{c_{-}}{c_{\mathrm{T}}}\right)^{11}\left(1-\left(\frac{c_{-}}{c_{\mathrm{T}}}\right)^{2}\right)^{1 / 2}$

We mav formally anoly perturbation theory to the oroblem by arroximatine the square of the phase velocity as follows:

$$
\begin{equation*}
c^{2}=c^{\prime^{2}}+\varepsilon_{1} c^{n^{2}} \tag{B-7}
\end{equation*}
$$

From equation ($B-4 a$) we note that the zeroth order nhase velocity is obtained from equation ($B-6$) by setting $c_{\mathrm{T}}^{2}=0$. The modal onuation reduces 10

$$
\begin{equation*}
m\left(1-\left(\frac{c^{\prime}}{\left.c_{o}-\right)^{2}}\right)^{1 / 2}+\left(1-\left(\frac{c^{\prime}}{c_{L}}-\right)^{2}\right)^{1 / 2}=0\right. \tag{p-P,a}
\end{equation*}
$$

or

$$
\mathrm{m}=\frac{-\left(1-\left(\frac{\mathrm{c}^{\prime}}{\mathrm{c}_{\mathrm{L}}}\right)^{2}\right)^{1 / 2}}{\left(1-\left(\frac{\mathrm{c}^{\prime}}{\mathrm{c}_{0}}\right)^{2}\right)^{1 / 2}}
$$

Recalling that $c_{L}>c_{o}$, we consider the various nossible values for

TABLE 2. Perturbation Parameters and Stonelev !ave velocities for North Pacific Sediments
 (From Hamilton [4] and Strick and rinsharo [12].)

Sediment Tyne	ε_{1}	ε_{2}	$c_{\text {STOMLEY(m/sec) }}$
Sand:			
\quad Coarse	.0184	.5100	224
Fine	.0485	.3560	341
Very Fine	.0865	.2880	445
Silty Sand	.0750	.2450	1105
Sandy Silt	.0595	.0755	330
Sand-Silt-Clav	.0649	.1100	358
Clavey Sillt	.0430	.0489	314
Silty Clav	.0358	.0267	248

c^{\prime} as follows:
(A) If $c^{\prime}>c_{L}$, the rirfht-hand side of enuation ($B-8 b$) is nepetive.
(B) If $c^{\prime}<c_{0}$, the right-hand side of eruation (?-Pb) is neontive.
(C) If $c_{0}<c^{\prime}<c_{L}$, the ripht-hand side of enuation ($B-8 b$) is imarinary.

Since m is a density ratio, each of these nossibilities renresents a physically inmossible situation. We conclude that the zeroth order nhase velocity does not exist and equation ($B-7$) reduces to

$$
\begin{equation*}
c^{2}=E_{1} c^{n 2} \tag{B-0}
\end{equation*}
$$

Substitutine oquations (B-4a), $(B-5)$, and ($B-7$) thto the moral enation (B-6) wd] Yteld:

$$
\begin{aligned}
& 0=m\left(1-\varepsilon_{1}\left(1+\epsilon_{2}\right)\left(\frac{c^{\prime \prime}}{c_{L}}\right)^{2}\right)^{1 / 2}\left[\left(2-\left(\frac{c^{\prime \prime}}{c_{L}}\right)^{2}\right)^{2}-11\left(1-\varepsilon_{1}\left(\frac{c^{\prime \prime}}{c_{L}}\right)^{2}\right)^{1 / 2}\left(1-\left(\frac{c^{\prime \prime}}{c_{I_{1}}}\right)^{2}\right)^{1 / 2}\right] \\
&+\left(\frac{c^{\prime \prime}}{c_{L}}\right)^{4}\left(1-\varepsilon_{1}\left(\frac{c^{\prime \prime}}{c_{L}}\right)^{2}\right)^{1 / 2}
\end{aligned}
$$

Annlyine the binomial theoren to this mesult we obtatn

$$
\begin{align*}
0=m\left(1-\frac{\varepsilon_{I}+\varepsilon_{1} \varepsilon^{2}}{2}\left(\frac{c^{\prime \prime}}{c_{L}}\right)^{2}\right) & {\left[\left(2-\left(\frac{c^{\prime \prime}}{c_{\mathrm{J}}}\right)^{2}\right)^{2}-H\left(1-\frac{\varepsilon_{1}}{2}\left(\frac{c^{\prime \prime}}{c_{L}}\right)^{2}\right)\left(1-\left(\frac{c^{\prime \prime}}{c_{L}}\right)^{2}\right)^{1 / 2}\right] } \\
& +\left(\frac{c^{\prime \prime}}{c_{J}}\right)\left(1-\frac{\varepsilon_{1}}{2}\left(\frac{c^{\prime \prime}}{c_{L}}\right)^{2}\right) \tag{B-10}
\end{align*}
$$

Equatine each order in equation (B-In) to zero will rive the follorinc mosults:

$$
\begin{gather*}
m\left[\left(2-\left(\frac{c^{\prime \prime}}{c_{L}}\right)^{2}\right)^{2}-4\left(1-\left(\frac{e^{\prime \prime}}{c_{I}}\right)^{2}\right)^{1 / 2}\right]=-\left(\frac{c^{\prime \prime}}{c_{L}}\right)^{\prime \prime} \tag{B-12a}\\
E_{1}\left[-\frac{m}{2}\left(\frac{c^{\prime \prime}}{c_{L}}\right)^{2}\left[\left(2-\left(\frac{c^{\prime \prime}}{c_{L}}\right)^{2}\right)^{2}-4\left(1-\left(\frac{c^{\prime \prime}}{c_{L}}\right)^{2}\right)^{1 / 2}\right]+2 m\left(\frac{c^{\prime \prime}}{c_{L}}\right)^{2}\left(1-\left(\frac{c^{\prime \prime}}{c_{L}}\right)^{2}\right)^{1 / 2}-\frac{1}{2}\left(\frac{c^{11}}{c_{L}}\right)^{6}\right]=0 \tag{?-1.16}
\end{gather*}
$$

Combininf, equations ($\mathrm{E}-11 \mathrm{a}$) and ($\mathrm{B}-11 \mathrm{~b}$) we obtain

$c^{\prime \prime}=c_{L}$

($\mathrm{B}-11 \mathrm{C}$)

Applying this result, it follows from equations ($\mathrm{P}-8 \mathrm{C}$) and ($\mathrm{B}-\mathrm{Ha}$) that $c=c_{T}$ to first order in E.

APPFNDIX C

DEIERTINATIO: OF THE LOWEST ORDER COMSTATT PND THE DISCONTINUTIY ACROSS ERAIJCH LTIE L_{1}

The discontinuity across the brench line L_{1} is riven by the followlng relation
$F\left(a_{o}^{2}\right)=D\left(\left(a_{L}-i \eta_{L}\right)^{2}\right)=\frac{1}{a_{T}}\left[\frac{N\left(a_{0}^{2},-a_{L}\right)}{D\left(a_{0}^{2},-a_{I}\right)}-\frac{N\left(a_{0}^{2}, a_{T}\right)}{D\left(a_{O}^{2}, a_{T}\right.}\right]=A+B n_{I_{1}}+C \eta_{I}^{2}+\cdots$

It should be clear that the lowest orter constant A is determined hy settiner $\eta_{L}=0$. It follows that

Recalling that $5=K_{L}$ at the branch noint, we mav write

$$
\begin{align*}
& N\left(a_{L}\right)=\alpha_{L} m\left[\left(2 K_{L}^{2}-K_{T}^{2}\right)^{2}-4 a_{1} a_{T} K_{L}^{2}\right]-Y_{T}^{4} a_{L} \tag{C-3a}\\
& D\left(a_{L}\right)=\alpha_{L} m\left[\left(2 K_{L}^{2}-K_{T}^{2}\right)^{2}-4 a_{L} a_{T} K_{L}^{2}\right]+K_{T}^{4} a_{L} \tag{c-3b}\\
& N\left(-a_{L}\right)=a_{I} m\left[\left(2 K_{L}^{2}-Y_{T}^{2}\right)^{2}+4 a_{L} a_{T} K_{L}^{2}\right]+Y_{T M}^{4} \tag{C-3c}\\
& D\left(-a_{L}\right)=\alpha_{L} m\left[\left(2 K_{L}^{2}-K_{T}^{2}\right)^{2}+4 a_{L} a_{T} K_{L}^{2}\right]-K_{T}^{4} a_{L} \tag{0-3d}
\end{align*}
$$

It follows that

Substituting equations ($c-4 a-c$) into enuation (c-2) will vield:

$$
\begin{equation*}
A=\frac{4 a_{L} m K_{T}^{4}\left(2 K_{L}^{2}-K_{T}^{2}\right)^{2}}{\left(\alpha_{L} m\right)^{2}\left[\left(2 K_{L}^{2}-K_{T}^{2}\right)^{4}-16 a_{L}^{2} a_{T}^{2} K_{L}^{4}\right]-8 \alpha_{L} m a_{L}^{2} a_{T} K_{L}^{2} K_{T}^{4}-K_{T}^{8} a_{L}^{2}} \tag{c-5}
\end{equation*}
$$

We note that at the branch point

$$
\begin{equation*}
a_{L}=\left(-21 \pi_{L} a_{L}-\eta_{L}^{2}\right)^{1 / 2}=0 \tag{c-6}
\end{equation*}
$$

Applyine, this result, equation (C-5) reducos to

$$
A=A_{1}^{\prime}=\frac{4 K_{T I}^{4}}{a_{I}^{m}\left(2 X_{L}^{2}-K_{T}^{2}\right)^{2}}
$$

APPENDIX D

DEIEPMNATION OF THE IOWEST OROER CMSTATT TOR THE DISCOMITMUTTY ACROSS RRNCH LITE L_{3}

The procedure used to determine the lowest order constant for $F\left(a_{1}^{2}\right)$ is identical to that used in Anpendix C. The discontinuity is given by

$$
\begin{equation*}
F\left(a_{T}^{2}\right)=\frac{1}{a_{T}}\left[\frac{N\left(-a_{T}\right) D\left(a_{T}\right)-N\left(a_{T}\right) D\left(-a_{T}\right)}{D\left(-a_{T}\right) D\left(a_{R}\right)}\right. \tag{D-1}
\end{equation*}
$$

Recalling that $\xi_{3}=K_{T}$ at the branch noint, wo write

$$
\begin{align*}
& N\left(a_{T}\right)=a_{T} m\left[K_{T}^{4}-4 a_{L} a_{T} k_{T}^{2}\right]-K_{T}^{4} a_{L} \tag{D-?a}\\
& N\left(-a_{T}\right)=a_{T} m\left[K_{T}^{4}+4 a_{L} a_{T} K_{T}^{2}\right]-K_{T}^{4} a_{L} \tag{D-2h}\\
& D\left(a_{T}\right)=a_{T} m\left[K_{T}^{4}-4 a_{L} a_{T} K_{T}^{2}\right]+K_{T}^{4} T \tag{D-2c}\\
& D\left(-a_{T}\right)=a_{T} m\left[K_{T}^{4}+4 a_{L} a_{T} K_{T}^{2}\right]+K_{T}^{4} a_{T} \tag{D-20}
\end{align*}
$$

It follows that

$$
\begin{align*}
& D\left(-a_{T}\right) D\left(a_{T}\right)=\left\{\left(a_{H} m\right)^{2}\left[K_{T}^{8}-16 a_{L}^{2} a_{T}^{2} K_{T}^{4}\right]+2 a_{T} m a L_{1} k_{T}^{8}+Y_{T}^{8} a_{L}^{2}\right\} \tag{n-3b}
\end{align*}
$$

Substitutine, equations ($D-3 a-c$) into equation ($D-1$), and notine thet $a_{T}=0$ at the branch point we obtain

$$
\begin{equation*}
B_{1}^{\prime}=\frac{-16 a_{T}^{m a}}{L_{L}^{2}} k_{I}^{2}\left(a_{I}^{\left.m+a_{L}\right)^{2}}\right. \tag{n-4}
\end{equation*}
$$

appendix E

For small darming, we mav set
It follows that
To minimize alfebrate cormlexity, we deftne the following functions:
$B_{1}=\left(K_{T_{0}}^{2}-K_{0}^{2}\right)^{1 / 2}$
$B_{2}=\left(K_{T 0}^{2}-K_{L o}^{2}\right)^{1 / 2}$
$B_{3}=\left(K_{T o} K_{T}^{\prime}-K_{L O} K_{L}^{\prime}\right)$

Applying the results of equations (E-5) and (E-6) to equation (E-1), we may desi, nate the elastic commont
of the Green's Function as:
$G_{E}=\frac{1}{4 \pi} e^{-1 K_{0}(h-z)}$

[^0](E-7)
(E-8)

39

Report Distribution

Copies
External Distribution
Sea Grant Depository 1
Sea Grant 70's 1
Office of Sea Grant 5
Robert Wildman - National Sea Grant Program Office 1
NOAA - Technical Information Division 50
Fogers Rutter - Office of State Planning 2
Raytheon Distribution
Arthur S. Westneat 10
Internal Distribution
Vice Provost Robert Faiman 1
Dean Richard S. Davis 1
Dean William H. Drew 1
Dean Maynard Heckel 1
prof. E. E. Allmendinger 1
Prof. William Mosberq 1
Dimond Library 1
News Bureau 1
Project Tean 11

[^0]: Simlarly, the viscoelastic contribution is expressed by the following relationshin:

